

NTNU

Innovation and Creativity

Automatic Blood Glucose Control for Diabetics

Anders Lyngvi Fougner
Department of Engineering Cybernetics
January 10, 2008

Outline

Introduction

Diabetes Type I Blood Glucose Control Previous work

Automatic Control

Constraints

Dynamic Model

Parameters

Model Predictive Control

Conclusion

Future

Diabetes Type I

- Autoimmune disease
- Deficiency or absence of insulin production
- Autoimmune attack and permanent destruction of the insulin-producing beta cells of pancreas
- Treatment with exogenous insulin via injections
- Hypoglycemia (plasma glucose level < 3.5 mmol/L)
- Hyperglycemia (> 7.5 mmol/L)
- Avoid short- and long-term complications due to hypoglycemia
- Avoid long-term complications due to hyperglycemia
- Control goal: Average plasma glucose ≈ 5 mmol/L and never hypoglycemia

Actuator: Insulin (I)

- Insulin analogs: Effect after 20 minutes, maximum after ≈ 1 hour, ends at $\approx 4-5$ hours
- Can be injected continuously, using an insulin pump
- Statement I: We have a slow actuator
- Statement II: Our actuator works only in one direction (down) for the plasma glucose level

Insulin Pump

- Insulin compartment (3 mL) lasts for $\approx 3 10$ days
- Soft cannula, must be moved every
 3 5 days
- Possible to disconnect tube from cannula
- Disconnect for swimming/showering

Disturbance 1: Food

- Effect starts after 10-40 minutes, may last for $\frac{1}{2}-10$ hours
- Forward-connection: Possible to predict with measurements in abdomen or in mouth?
- Statement I: This disturbance is often faster than the actuator
- Statement II: This disturbance may vary a lot (depending on the type and amount of food/drink)

- Effect starts after 30-60 minutes, may last for 1-72 hours
- Forward-connection: Possible to predict, using a pulse watch
- Statement I: This disturbance is slow, and slower than the actuator

Actuator and Disturbance Effects

Special Case: Alcohol

- Effect of the sugar contained in some alcohol drinks (beer): Fast effect (after 10-40 minutes), raising the blood sugar
- Effect of alcohol: Slow effect (5 10 hours), lowering the blood sugar. Dangerous!

- Unit: mmol/L in Europe [US: mg/dL]
- Difficult to measure continuously, but it is possible with new technology (although the price is high, $\approx 200 \text{ NOK/day}$)
- Not accurate
- Needs calibration (at least two times every day)
- In Norway: Available for testing, from december 2007

Overall System

A: Insulin pump

B: Cannula (soft tube)

C: Glucose sensor

D: RF transmitter

Blood Glucose Sensor: Experiences

- Sensor lifetime ≈ 3 days, but sometimes up to 6 days
- Sometimes the sensor does not work at all (gives constant) values) and needs to be changed
- Absolute accuracy is quite bad
- Good at showing trends (increasing/decreasing level)
- Alarms (low/high/increasing/decreasing), very useful!
- Simple feedback (turn insulin pump on/off) would be a simple improvement
- Not very user-friendly yet

5-6 jan 2008

Previous Work on Automatic Control

- Bergman's (1991) "minimal model" (3 5 differential equations)
- The first insulin pumps (1985)
- Fisher (1991) uses the Bergman model for simple open-loop controllers
- Lynch et al. (2002) describes MPC, though based on not-reliable sensors and only simulations
- First reliable sensors (2006)

Introduction Automatic Control Conclusion References Constraints Dynamic Model Parameters MPC

Constraints

Bergman's "Minimal Model"

$$\dot{G} = -p_1 G - X(G + G_B) + D(t) \tag{1}$$

$$\dot{I} = -n(I + I_B) + \frac{u(t)}{V_I} \tag{2}$$

$$\dot{X} = -p_2 X + p_3 I \tag{3}$$

- G(t) Deviation of plasma glucose concentration [mmol/L] from its basal value G_B
- I(t) Deviation of free plasma insulin concentration [mU/L] from its basal value I_B
- X(t) Insulin concentration in the remote compartment

Bergman's "Minimal Model"

$$\dot{G} = -p_1 G - X(G + G_B) + D(t) \tag{1}$$

$$\dot{I} = -n(I + I_B) + \frac{u(t)}{V_I} \tag{2}$$

$$\dot{X} = -p_2 X + p_3 I \tag{3}$$

- Parameters describing the dynamics of plasma glucose and insulin interaction
- D(t) Rate of exogenous infusion of glucose
- u(t) Rate of exogenous infusion of insulin
- *V*_I Insulin distribution volume [L]
 - Fractional disappearance rate of insulin [/min]

n

Bergman's Extended Model (I)

Models a first-order lag of 5 minutes from plasma glucose concentration to subcutaneous glucose.

$$\dot{G}_{sc} = \frac{G - G_{sc}}{5} - R_{ut} \tag{4}$$

- G(t) Deviation of plasma glucose concentration [mmol/L] from its basal value G_B
- $G_{sc}(t)$ glucose concentration in subcutaneous/peripherous layer [mmol/L]
- R_{ut} tissue rate of utilization [mmol/L/min]

Bergman's Extended Model (II)

Meal glucose disturbance function (very simplified!)

$$\dot{D}_m = -\alpha D_m(t) \tag{5}$$

- $D_m(t)$ Meal glucose disturbance [mmol/L/min]
- Parameter depending on type of food α (typically 0.001 - 0.5)

Parameters (I)

$$egin{array}{lll} V_I &= 20 & {
m [L]} \ n &= rac{5}{54} & {
m [/min]} \ G_B &= 4.5 & {
m [mmol/L]} \ I_B &= 15 & {
m [mU/L]} \ \end{array}$$

Parameters (II)

For normal persons:

$$p_1 = 0.028$$

 $p_2 = 0.025$
 $p_3 = 0.000013$

For a diabetic:

$$p_1 = 0$$
 $p_2 = 0.025$
 $p_3 = 0.000013$

Model Predictive Control

- Difficulty: The actuator works only in one direction (lowering the plasma glucose level)
- Estimate plasma glucose concentration based on subcutaneous glucose measurements (Kalman filter)
- Performance might be improved with a feed-forward connection (input from the user; food/exercise/etc)
- Simulate before implementing/testing
- Verify the model (now possible)
- Large margins on the first tests

Constraints (Lynch et al. (2002))

Input

[U/h, where
$$U = \frac{1}{100} \text{ mL}$$
]

Predicted plasma glucose concentration

$$3.5 \le \hat{y} \le 10$$

[mmol/L]

Input increments

$$-1.0 < \Delta u < 1.0$$

[U/h]

Future

- Improve the sensors
- Improve and verify the models
- Measure/observe disturbances (feed-forward)?
- Simulate with MPC
- Test MPC on insulin pumps for real diabetics
- Build sensor into cannula
- Lower price for sensors and insulin pumps

References

- Fisher, M. E. A Semiclosed-Loop Algorithm for the Control of Blood Glucose Levels in Diabetics. IEEE Trans. Biomed. Eng., 38:57-61, 1991.
- Ibbini, M. S., Masadeh, M. A. and Amer, M. M. B. A Semiclosed-Loop Optimal Control System for Blood Glucose Levels in Diabetics. J Med. Eng. & Tech., **28:5**:189-196, 2004.
- Lynch, S. M. and Bequette, B. W. Model Predictive Control of Blood Glucose in Type-I Diabetics Using Subcutaneous Glucose Measurements Proc. Am. Contr. Conf., pp. 4039-4043, 2002.